Influence of mustard group structure on pathways of in vitro metabolism of anticancer N-(2-hydroxyethyl)-3,5-dinitrobenzamide 2-mustard prodrugs.

نویسندگان

  • Nuala A Helsby
  • Michael A Goldthorpe
  • Magdalene H Y Tang
  • Graham J Atwell
  • Eileen M Smith
  • William R Wilson
  • Malcolm D Tingle
چکیده

The dinitrobenzamide mustards are a class of bioreductive nitro-aromatic anticancer prodrugs, of which a phosphorylated analog (PR-104) is currently in clinical development. They are bioactivated by tumor reductases to form DNA cross-linking cytotoxins. However, their biotransformation in normal tissues has not been examined. Here we report the aerobic in vitro metabolism of three N-(2 hydroxyethyl)-3,5-dinitrobenzamide 2-mustards and the corresponding nonmustard analog in human, mouse, rat, and dog hepatic S9 preparations. These compounds have a range of mustard structures (-N(CH(2)CH(2)X)(2) where X = H, Cl, Br, or OSO(2)Me). Four metabolic routes were identified: reduction of either nitro group, N-dealkylation of the mustard, plus O-acetylation, and O-glucuronidation of the hydroxyethyl side chain. Reduction of the nitro group ortho to the mustard resulted in intramolecular alkylation and is considered to be an inactivation pathway, whereas reduction of the nitro group para to the mustard generated potential DNA cross-linking cytotoxins. N-Dealkylation inactivated the mustard moiety but may result in the formation of toxic acetaldehyde derivatives. Increasing the size of the nitrogen mustard leaving group abrogated the ortho-nitroreduction and N-dealkylation routes and thereby improved overall metabolic stability but had little effect on aerobic para-nitroreduction. All four compounds underwent O-glucuronidation of the hydroxyethyl side chain and further studies to elucidate the relative importance of this pathway in vivo are in progress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolism and excretion of the novel bioreductive prodrug PR-104 in mice, rats, dogs, and humans.

PR-104 is the phosphate ester of a 3,5-dinitrobenzamide nitrogen mustard (PR-104A) that is reduced to active hydroxylamine and amine metabolites by reductases in tumors. In this study, we evaluate the excretion of [(3)H]PR-104 in mice and determine its metabolite profile in mice, rats, dogs, and humans after a single intravenous dose. Total radioactivity was rapidly and quantitatively excreted ...

متن کامل

Acyloxymethyl esters of isophosphoramide mustard as new anticancer prodrugs.

A series of new prodrugs: [bis(2-chloroethylamino)phosphoryloxy]methyl acetate, [bis(2-chloroethylamino)phosphoryloxy]methyl pivalate and [bis(2-chloroethylamino)phosphoryloxy]methyl benzoate, was obtained in the reaction of isophosphoramide mustard (iPAM) with the corresponding acyloxymethyl halides. The cytotoxic activity of these new compounds is also shown. All compounds were highly active ...

متن کامل

Preparation of acrylic-type derivative of ibuprofen and in vitro evaluation studies of its polymeric prodrugs

Acrylic-type polymeric systems having degradable ester bonds linked to ibuprofen were synthesized and evaluated as materials for drug delivery. Ibuprofen, as a non-steroidal anti-inflammatory drug, was linked to 2-hydroxyethyl methacrylate by activated ester methodology in one-pot procedure. The resulting methacrylic derivative of ibuprofen was copolymerized with 2-hydroxyethyl methacrylate and...

متن کامل

1,2-benzisoxazole phosphorodiamidates as novel anticancer prodrugs requiring bioreductive activation.

Several 1,2-benzisoxazole phosphorodiamidates have been designed as prodrugs of phosphoramide mustard requiring bioreductive activation. Enzymatic reduction of 1,2-benziosoxazole moiety is expected to result in the formation of imine intermediate due to the cleavage of the N-O bond. The imine should then be spontaneously hydrolyzed to a ketone metabolite, thereby facilitating base-catalyzed bet...

متن کامل

Glucuronidation of anticancer prodrug PR-104A: species differences, identification of human UDP-glucuronosyltransferases, and implications for therapy.

PR-104, the phosphate ester of a dinitrobenzamide mustard [PR-104A; 2-((2-bromoethyl)-2-{[(2-hydroxyethyl) amino] carbonyl}-4,6-dinitroanilino)ethyl methanesulfonate], is currently in clinical trial as a hypoxia- and aldo-keto reductase 1C3 (AKR1C3)-activated prodrug for cancer therapy. Here, we investigate species (human, dog, rat, mouse) differences in metabolism to the corresponding O-glucur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 36 2  شماره 

صفحات  -

تاریخ انتشار 2008